Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in Candida albicans

Author:

Hossain Saif1,Veri Amanda O1,Liu Zhongle1,Iyer Kali R1,O’Meara Teresa R2ORCID,Robbins Nicole1,Cowen Leah E1

Affiliation:

1. Department of Molecular Genetics, University of Toronto, Toronto, ON M5S, Canada

2. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

Abstract

Abstract Candida albicans is a leading human fungal pathogen, which can cause superficial infections or life-threatening systemic disease in immunocompromised individuals. The ability to transition between yeast and filamentous forms is a major virulence trait of C. albicans, and a key regulator of this morphogenetic transition is the molecular chaperone Hsp90. To explore the mechanisms governing C. albicans morphogenesis in response to Hsp90 inhibition, we performed a functional genomic screen using the gene replacement and conditional expression collection to identify mutants that are defective in filamentation in response to the Hsp90 inhibitor, geldanamycin. We found that transcriptional repression of genes involved in mitochondrial function blocked filamentous growth in response to the concentration of the Hsp90 inhibitor used in the screen, and this was attributable to increased resistance to the compound. Further exploration revealed that perturbation of mitochondrial function reduced susceptibility to two structurally distinct Hsp90 inhibitors, geldanamycin and radicicol, such that filamentous growth was restored in the mitochondrial mutants by increasing the compound concentration. Deletion of two representative mitochondrial genes, MSU1 and SHY1, enhanced cellular efflux and reduced susceptibility to diverse intracellularly acting compounds. Additionally, screening a C. albicans efflux pump gene deletion library implicated Yor1 in the efflux of geldanamycin and Cdr1, in the efflux of radicicol. Deletion of these transporter genes restored sensitivity to Hsp90 inhibitors in MSU1 and SHY1 homozygous deletion mutants, thereby enabling filamentation. Taken together, our findings suggest that mitochondrial dysregulation elevates cellular efflux and consequently reduces susceptibility to xenobiotics in C. albicans.

Funder

Canadian Institutes of Health Research

National Institutes of Health

NIH

Canada Research Chair

Microbial Genomics & Infectious Disease

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3