Structure-Function Analysis of Yeast mRNA Cap Methyltransferase and High-Copy Suppression of Conditional Mutants by AdoMet Synthase and the Ubiquitin Conjugating Enzyme Cdc34p

Author:

Schwer Beate1,Saha Nayanendu2,Mao Xiangdong2,Chen Hsiao-Wang1,Shuman Stewart2

Affiliation:

1. Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021

2. Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021

Abstract

Abstract Here we present a genetic analysis of the yeast cap-methylating enzyme Abd1p. To identify individual amino acids required for Abd1p function, we introduced alanine mutations at 35 positions of the 436-amino acid yeast protein. Two new recessive lethal mutations, F256A and Y330A, were identified. Alleles F256L and Y256L were viable, suggesting that hydrophobic residues at these positions sufficed for Abd1p function. Conservative mutations of Asp-178 established that an acidic moiety is essential at this position (i.e., D178E was viable whereas D178N was not). Phe-256, Tyr-330, and Asp-178 are conserved in all known cellular cap methyltransferases. We isolated temperature-sensitive abd1 alleles and found that abd1-ts cells display a rapid shut-off of protein synthesis upon shift to the restrictive temperature, without wholesale reduction in steady-state mRNA levels. These in vivo results are consistent with classical biochemical studies showing a requirement for the cap methyl group in cap-dependent translation. We explored the issue of how cap methylation might be regulated in vivo by conducting a genetic screen for high-copy suppressors of the ts growth defect of abd1 mutants. The identification of the yeast genes SAM2 and SAM1, which encode AdoMet synthase, as abd1 suppressors suggests that Abd1p function can be modulated by changes in the concentration of its substrate AdoMet. We also identified the ubiquitin conjugating enzyme Cdc34p as a high-copy abd1 suppressor. We show that mutations of Cdc34p that affect its ubiquitin conjugation activity or its capacity to interact with the E3-SCF complex abrogate its abd1 suppressor function. Moreover, the growth defect of abd1 mutants is exacerbated by cdc34-2. These findings suggest a novel role for Cdc34p in gene expression and engender a model whereby cap methylation or cap utilization is negatively regulated by a factor that is degraded when Cdc34p is overexpressed.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3