The cryptocephal Gene (ATF4) Encodes Multiple Basic-Leucine Zipper Proteins Controlling Molting and Metamorphosis in Drosophila

Author:

Hewes Randall S1,Schaefer Anneliese M1,Taghert Paul H1

Affiliation:

1. Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110

Abstract

Abstract The cryptocephal (crc) mutation causes pleiotropic defects in ecdysone-regulated events during Drosophila molting and metamorphosis. Here we report that crc encodes a Drosophila homolog of vertebrate ATF4, a member of the CREB/ATF family of basic-leucine zipper (bZIP) transcription factors. We identified three putative protein isoforms. CRC-A and CRC-B contain the bZIP domain, and CRC-D is a C-terminally truncated form. We have generated seven new crc alleles. Consistent with the molecular diversity of crc, these alleles show that crc is a complex genetic locus with two overlapping lethal complementation groups. Alleles representing both groups were rescued by a cDNA encoding CRC-B. One lethal group (crc1, crcR6, and crcRev8) consists of strong hypomorphic or null alleles that are associated with mutations of both CRC-A and CRC-B. These mutants display defects associated with larval molting and pupariation. In addition, they fail to evert the head and fail to elongate the imaginal discs during pupation, and they display variable defects in the subsequent differentiation of the adult abdomen. The other group (crcR1, crcR2, crcE85, crcE98, and crc929) is associated with disruptions of CRC-A and CRC-D; except for a failure to properly elongate the leg discs, these mutants initiate metamorphosis normally. Subsequently, they display a novel metamorphic phenotype, involving collapse of the head and abdomen toward the thorax. The crc gene is expressed throughout development and in many tissues. In third instar larvae, crc expression is high in targets of ecdysone signaling, such as the leg and wing imaginal discs, and in the ring gland, the source of ecdysone. Together, these findings implicate CREB/ATF proteins in essential functions during molting and metamorphosis. In addition, the similarities between the mutant phenotypes of crc and the ecdysone-responsive genes indicate that these genes are likely to be involved in common signaling pathways.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3