Affiliation:
1. Duke University Medical Center, Durham, North Carolina 27710
Abstract
Abstract
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the genetic analysis of break repair. SSA occurs readily in broken plasmid DNA and is independent of the strand exchange protein UvsX and its accessory factor UvsY. We use the unique features of T4 DNA metabolism to examine the link between SSA repair and DNA replication and demonstrate directly that the DNA polymerase and the major replicative helicase of the phage are not required for SSA repair. We also show that the Escherichia coli RecBCD enzyme can mediate the degradation of broken DNA during early, but not late, times of infection. Finally, we consider the status of broken ends during the course of the infection and propose a model for SSA during T4 infections.
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献