Evolution of a new form of haploid-specific gene regulation appearing in a limited clade of ascomycete yeast species

Author:

Del Frate Francesca12,Garber Megan E1,Johnson Alexander D12

Affiliation:

1. Department of Microbiology and Immunology, University of California, San Francisco , San Francisco, CA 94102 , USA

2. Tetrad Graduate Program, University of California, San Francisco , San Francisco, CA 94102 , USA

Abstract

Abstract Over evolutionary timescales, the logic and pattern of cell-type specific gene expression can remain constant, yet the molecular mechanisms underlying such regulation can drift between alternative forms. Here, we document a new example of this principle in the regulation of the haploid-specific genes in a small clade of fungal species. For most ascomycete fungal species, transcription of these genes is repressed in the a/α cell type by a heterodimer of two homeodomain proteins, Mata1 and Matα2. We show that in the species Lachancea kluyveri, most of the haploid-specific genes are regulated in this way, but repression of one haploid-specific gene (GPA1) requires, in addition to Mata1 and Matα2, a third regulatory protein, Mcm1. Model building, based on x-ray crystal structures of the three proteins, rationalizes the requirement for all three proteins: no single pair of the proteins is optimally arranged, and we show that no single pair can bring about repression. This case study exemplifies the idea that the energy of DNA binding can be “shared out” in different ways and can result in different DNA-binding solutions across different genes—while maintaining the same overall pattern of gene expression.

Funder

NIH

Hooper Graduate Student Fellowship

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3