Loss- and gain-of-function analyses reveal the essential role of Cyp19a1 in ovarian determination of the red-eared slider turtle

Author:

Shen Jiadong12,Sun Wei12,Wu Kaiyue12,Zhuang Tianyi12,Lei Jiandong12,Ma Qinglu12,Xiao Ling12,Ge Chutian12ORCID

Affiliation:

1. Institute of Animal Sex and Development, Zhejiang Wanli University , Ningbo 315100 , China

2. College of Biological and Environmental Sciences, Zhejiang Wanli University , Ningbo 315100 , China

Abstract

Abstract Estrogen signaling exerts a decisive role in female sex determination and differentiation in chicken and fish. Aromatase encoded by Cyp19a1 is the key enzyme that catalyzes the conversion of androgen to estrogen. Correlative analyses implicate the potential involvement of aromatase in reptilian sexual development, however, the direct genetic evidence is lacking. Herein, we found that Cyp19a1 exhibited temperature-dependent sexually dimorphic expression, and located in the medullary somatic cells in early female embryos of the red-eared slider turtle (Trachemys scripta elegans), before the gonad is distinct. To determine the functional role of Cyp19a1 in turtle ovarian determination, we established loss- and gain-of-function models through in ovo lentivirus-mediated genetic manipulation. At female-producing temperature, inhibition of aromatase or knockdown of Cyp19a1 in turtle embryos resulted in female-to-male sex reversal, with the formation of a testis-like structure and a male distribution pattern of germ cells, as well as ectopic expression of male-specific markers (SOX9 and AMH) and disappearance of ovarian regulator FOXL2. On the contrary, overexpression of Cyp19a1 at male-producing temperature led to male-to-female sex reversal. In conclusion, our results suggest that Cyp19a1 is both necessary and sufficient for ovarian determination in the red-eared slider turtle, establishing causality and a direct genetic link between aromatase and reptilian sex determination and differentiation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Key Agricultural Project of Ningbo

Basic Scientific Research Foundation of Zhejiang Provincial Universities

Key Scientific and Technological Grant of Zhejiang for Breeding New Agricultural Varieties

Key Technology Research and Development Projects in Ningbo

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tilapia, a good model for studying reproductive endocrinology;General and Comparative Endocrinology;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3