Homology Modeling and Mutational Analysis of Ho Endonuclease of Yeast

Author:

Bakhrat Anya1,Jurica Melissa S2,Stoddard Barry L2,Raveh Dina1

Affiliation:

1. Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel

2. Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

Abstract

Abstract Ho endonuclease is a LAGLIDADG homing endonuclease that initiates mating-type interconversion in yeast. Ho is encoded by a free-standing gene but shows 50% primary sequence similarity to the intein (protein-intron encoded) PI-SceI. Ho is unique among LAGLIDADG endonucleases in having a 120-residue C-terminal putative zinc finger domain. The crystal structure of PI-SceI revealed a bipartite enzyme with a protein-splicing domain (Hint) and intervening endonuclease domain. We made a homology model for Ho on the basis of the PI-SceI structure and performed mutational analysis of putative critical residues, using a mating-type switch as a bioassay for activity and GFP-fusion proteins to detect nuclear localization. We found that residues of the N-terminal sequence of the Hint domain are important for Ho activity, in particular the DNA recognition region. C-terminal residues of the Hint domain are dispensable for Ho activity; however, the C-terminal putative zinc finger domain is essential. Mutational analysis indicated that residues in Ho that are conserved relative to catalytic, active-site residues in PI-SceI and other related homing endonucleases are essential for Ho activity. Our results indicate that in addition to the conserved catalytic residues, Hint domain residues and the zinc finger domain have evolved a critical role in Ho activity.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3