Bipartite Structure of the SGS1 DNA Helicase in Saccharomyces cerevisiae

Author:

Mullen Janet R1,Kaliraman Vivek1,Brill Steven J1

Affiliation:

1. Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08855

Abstract

Abstract SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examined their ability to complement several sgs1 phenotypes. Certain SGS1 alleles showed distinct phenotypes: sgs1-hd failed to complement the MMS hypersensitivity and hyper-recombination phenotypes, but partially complemented the slow-growth suppression of top3 sgs1 strains and the top1 sgs1 growth defect. Unexpectedly, an allele that encodes the amino terminus alone showed essentially complete complementation of the hyper-recombination and top1 sgs1 defects. In contrast, an allele encoding the helicase domain alone was unable to complement any sgs1 phenotype. Small truncations of the N terminus resulted in hyperrecombination and slow-growth phenotypes in excess of the null allele. These hypermorphic phenotypes could be relieved by deleting more of the N terminus, or in some cases, by a point mutation in the helicase domain. Intragenic complementation experiments demonstrate that both the amino terminus and the DNA helicase are required for full SGS1 function. We conclude that the amino terminus of Sgs1 has an essential role in SGS1 function, distinct from that of the DNA helicase, with which it genetically interacts.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference37 articles.

1. Purification and characterization of the sgs1 DNA helicase activity of Saccharomyces cerevisiae;Bennett;J. Biol. Chem.,1998

2. The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae;Christman;Proc. Natl. Acad. Sci. USA,1993

3. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs;Czaplinski;Genes Dev.,1998

4. The Bloom's syndrome gene product is homologous to recQ helicases;Ellis;Cell,1995

5. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase;Gangloff;Mol. Cell. Biol.,1994

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3