Artificial and Epigenetic Regulation of the I Factor, a Nonviral Retrotransposon of Drosophila melanogaster

Author:

Gauthier Emmanuel1,Tatout Christophe2,Pinon Hubert1

Affiliation:

1. Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard, F-69622 Villeurbanne Cedex, France

2. Biogemma, F-63177 Aubière Cedex, France

Abstract

Abstract The I factor (IF) is a LINE-like transposable element from Drosophila melanogaster. IF is silenced in most strains, but under special circumstances its transposition can be induced and correlates with the appearance of a syndrome of female sterility called hybrid dysgenesis. To elucidate the relationship between IF expression and female sterility, different transgenic antisense and/or sense RNAs homologous to the IF ORF1 have been expressed. Increasing the transgene copy number decreases both the expression of an IF-lacZ fusion and the intensity of the female sterile phenotype, demonstrating that IF expression is correlated with sterility. Some transgenes, however, exert their repressive abilities not only through a copy number-dependent zygotic effect, but also through additional maternal and paternal effects that may be induced at the DNA and/or RNA level. Properties of the maternal effect have been detailed: (1) it represses hybrid dysgenesis more efficiently than does the paternal effect; (2) its efficacy increases with both the transgene copy number and the aging of sterile females; (3) it accumulates slowly over generations after the transgene has been established; and (4) it is maintained for at least two generations after transgene removal. Conversely, the paternal effect increases only with female aging. The last two properties of the maternal effect and the genuine existence of a paternal effect argue for the occurrence, in the IF regulation pathway, of a cellular memory transmitted through mitosis, as well as through male and female meiosis, and akin to epigenetic phenomena.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3