Author:
DeLong L,Plenefisch J D,Klein R D,Meyer B J
Abstract
Abstract
In Caenorhabditis elegans, sex determination and dosage compensation are coordinately controlled through a group of genes that respond to the primary sex determination signal. Here we describe a new gene, sdc-3, that also controls these processes. In contrast to previously described genes, the sex determination and dosage compensation activities of sdc-3 are separately mutable, indicating that they function independently. Paradoxically, the sdc-3 null phenotype fails to reveal the role of sdc-3 in sex determination: sdc-3 null mutations that lack both activities disrupt dosage compensation but cause no overt sexual transformation. We demonstrate that the dosage compensation defect of sdc-3 null alleles suppresses their sex determination defect. This self-suppression phenomenon provides a striking example of how a disruption in dosage compensation can affect sexual fate. We propose that the suppression occurs via a feedback mechanism that acts at an early regulatory step in the sex determination pathway to promote proper sexual identity.
Publisher
Oxford University Press (OUP)
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献