Mutational analysis of pre-mRNA splicing in Saccharomyces cerevisiae using a sensitive new reporter gene, CUP1.

Author:

Lesser C F,Guthrie C

Abstract

Abstract We have developed a new reporter gene fusion to monitor mRNA splicing in yeast. An intron-containing fragment from the Saccharomyces cerevisiae ACT1 gene has been fused to CUP1, the yeast metallothionein homolog. CUP1 is a nonessential gene that allows cells to grow in the presence of copper in a dosage-dependent manner. By inserting previously characterized intron mutations into the fusion construct, we have established that the efficiency of splicing correlates with the level of copper resistance of these strains. A highly sensitive assay for 5' splice site usage was designed by engineering an ACT1-CUP1 construct with duplicated 5' splice sites; mutations were introduced into the upstream splice site in order to evaluate the roles of these highly conserved nucleotides in intron recognition. Almost all mutations in the intron portion of the 5' consensus sequence abolish recognition of the mutated site, while mutations in the exon portion of the consensus sequence have variable affects on cleavage at the mutated site. Interestingly, mutations at intron position 4 demonstrate that this nucleotide plays a role in 5' splice site recognition other than by base pairing with U1 snRNA. The use of CUP1 as a reporter gene may be generally applicable for monitoring cellular processes in yeast.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3