Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe.

Author:

Schär P,Kohli J

Abstract

Abstract G to C transversion mutations show very strong allele-specific marker effects on the frequency of wild-type recombinants in intragenic two-factor crosses. Here we present a detailed study of the marker effect of one representative, the ade6-M387 mutation of Schizosaccharomyces pombe. Crosses of M387 with other mutations at varying distance reveal highly increased prototroph frequencies in comparison with the C to T transition mutation ade6-51 (control without any known marker effect) located four nucleotides from M387. The marker effect of M387 is strongest (> 40-fold) for crosses with mutations less than 15 nucleotides from M387. It decreases to an intermediate level (5-10-fold) in crosses with mutations located 25-150 base pairs from M387/51 and is very low in crosses with mutations beyond 200 base pairs. On the basis of these results and the quantitation of the low efficiency of C/C mismatch repair presented in the accompanying publication we propose the existence of at least two different types of mechanisms for base mismatch repair in fission yeast. The major system is suggested to recognize all base mismatches except C/C with high efficiency and to generate long excision tracts (approximately 100 nucleotides unidirectionally). The minor system is proposed to recognize all base mismatches including C/C with low and variable efficiency and to have short excision tracts (approximately 10 nucleotides unidirectionally). We estimate from the M387 marker effect that the minor system accounts for approximately 1-8% repair of non-C/C mismatches (depending on the nature of the mutation) in fission yeast meiosis.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3