MUTATIONS IN THE PHO80 GENE CONFER PERMEABILITY TO 5'-MONONUCLEOTIDES IN SACCHAROMYCES CEREVISIAE

Author:

Bisson Linda F1,Thorner Jeremy2

Affiliation:

1. Department of Microbiology, University of California, Berkeley, California 94720

2. Department of Immunology, University of California, Berkeley, California 94720

Abstract

ABSTRACT Yeast mutants permeable to dTMP (tup) were selected and two new complementation groups (tup5 and tup7) were identified. Assay of the levels of both acid and alkaline phosphatase in cells grown under either repressing (5 mm PO4  -3) or derepressing (0.03 mm PO4  -3) conditions indicated that, in general, tup mutations cause cells to be defective in their regulation of phosphatase synthesis. In addition, three of the tup mutations (tup1, tup4 and tup7) displayed markedly elevated rates of inorganic phosphate transport. The tup7 locus was found to be tightly centromere-linked on the right arm of chromosome XV, and was shown to be allelic with the pho80 regulatory locus on the basis of both genetic and biochemical criteria. Analysis of other mutations known to affect phosphatase levels (pho) indicated that some also conferred permeability to dTMP. Possible allelic relationships between tup genes and certain of these pho mutations are discussed. Regardless of the culture conditions, wild-type strains were not permeable to dTMP; in contrast, it was found in the course of this work that normal yeast cells were permeable to dUMP and that dUMP permeability was regulated by the concentration of inorganic phosphate present in the medium used to grow the cells. Thus, permeability to 5′-mononucleotides appears to be under coordinate control with phosphatase synthesis.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3