Affiliation:
1. Department of Biology, B-022, University of California, San Diego, La Jolla, California 92093
Abstract
ABSTRACT
The effects of 13 mutagen-sensitive (mus) mutants (representing seven loci) on mitotic chromosome stability in nonmutagenized cells have been examined genetically. To do this, mus-bearing flies heterozygous for the recessive somatic-cell marker, multiple wing hairs (mwh), were examined for increased frequencies of mwh clones in the wing blade. Mutants at the mus-103, mus-104 and mus-106 loci do not affect the frequency of mwh clones, while mus-101, mus-102, mus-105 and mus-109 alleles cause increases in the frequency of mwh clones. These data show that the wild-type alleles of latter four loci specify functions that are required for chromosome stability in nonmutagenized cells. Analysis of the size distribution of mwh clones produced by these mutants suggests that most chromosome instability caused by these mutants is the consequence of chromosome breakage; in the presence of mus-105 and mus-109 alleles a small fraction of the mwh clones are produced by an event (mitotic recombination, mutation, nondisjunction) that produces euploid clones. To inquire whether any of the extant alleles of the mus-101, mus-102, mus-105 and mus-209 loci might be leaky alleles of loci that carry out essential mitotic functions, chromosome stability in females homozygous for alleles of these loci has been compared to that of females carrying one dose of a mutant over a deficiency for that mus locus. These comparisons show that the extant alleles at the mus-102, mus-1O9 and mus-105 loci are all leaky mutants. It is suggested that all three of these loci may specify essential mitotic functions.
Publisher
Oxford University Press (OUP)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献