MEIOTIC AND MITOTIC BEHAVIOR OF DICENTRIC CHROMOSOMES IN SACCHAROMYCES CEREVISIAE

Author:

Haber James E1,Thorburn Patricia C1,Rogers David1

Affiliation:

1. Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254

Abstract

ABSTRACT Meiotic recombination between a circular and a linear chromosome in Saccharomyces cerevisiae has been investigated. The circle was a haploid-viable derivative of chromosome III constructed by joining regions near the two chromosome ends via a recombinant DNA construction: (HMR/MAT-URA3-pBR322-MAT/HML) and was also deleted for MAL2(which therefore uniquely marks a linear chromosome III). Recombination along chromosome III was measured for eight intervals spanning the entire length of the circular derivative. Only 25% of all tetrads from a ring/rod diploid contained four viable spores. These proved to be cases in which there was either no recombination along chromosome III or in which there were two-strand double crossovers or higher order crossovers that would not produce a dicentric chromosome.—At least half of the tetrads with three viable spores included one Ura+ Mal+ spore that was genetically highly unstable. The Ura+ Mal+ spore colonies gave rise to as many as seven genetically distinct, stable ("healed") derivatives, some of which had lost either URA3 or MAL2. Analysis of markers on chromosome III suggests that dicentric chromosomes frequently do not break during meiosis but are inherited intact into a haploid spore. In mitosis, however, the dicentric chromosome is frequently broken, giving rise to a variety of genetically distinct derivatives. We have also shown that dicentric ring chromosomes exhibit similar behavior: at least half the time they are not broken during meiosis but are broken and healed during mitosis.—The ring/rod diploid can also be used to determine the frequency of sister chromatid exchange (SCE) along an entire yeast ring chromosome. We estimate that an unequal number of SCE events occurs in approximately 15% of all cells undergoing meiosis. In contrast, the mitotic instability (and presumably SCE events) of a ring chromosome is low, occurring at a rate of about 1.2 x 10-3 per cell division.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3