A genetic linkage map of Saccharum spontaneum L. 'SES 208'.

Author:

al-Janabi S M,Honeycutt R J,McClelland M,Sobral B W

Abstract

Abstract The arbitrarily primed polymerase chain reaction was used to detect single-dose polymorphisms that, in turn, were used to generate a linkage map of a polyploid relative of cultivated sugarcane, Saccharum spontaneum 'SES 208' (2n = 64). The mapping population was composed of 88 progeny from a cross between SES 208 and a diploidized haploid derived from SES 208 by anther culture, ADP 85-0068. This cross allowed direct analysis of meiosis in SES 208 and gametic segregation ratios to be observed. One hundred twenty-seven 10-mer oligonucleotide primers of arbitrary sequence were selected from a pool of 420 primers used to screen the mapping parents. Three hundred thirty-six of the 420 primers amplified 4,540 loci or 13.5 loci per primer. The selected 127 primers revealed 2,160 loci of which 279 were present in SES 208 and absent in ADP 85-0068 and easily scored. Two hundred and eight (74.6%) of these 279 polymorphisms were single-dose polymorphisms (i.e., they displayed 1:1 segregation, chi 2 at 98% confidence level). Linkage analysis (theta = 0.25, LOD = 9.0 for two-point analysis, then theta = 0.25, LOD = 6.0 for multipoint analysis) of single-dose polymorphisms placed them into 42 linkage groups containing at least 2 markers. These single-dose markers span 1,500 contiguous centimorgans (cM) with 32 markers remaining unlinked (15.4%). From this 208-marker map we estimated the genome size of SES 208 to be 2,500 cM. The map has a predicted coverage of 85.1% at 30 cM, meaning that any new marker placed has an 85.1% chance of being within 30 cM of an existing marker. Furthermore, we show that SES 208 behaves like an autopolyploid because (i) the ratio of single-dose markers to higher dose markers fit the assumption of auto-octaploidy and (ii) the absence of repulsion phase linkages. This is the first genetic map constructed directly on a polyploid species for which no diploid relatives are known.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3