THE MANIFESTATION OF CHROMOSOME REARRANGEMENTS IN UNORDERED ASCI OF NEUROSPORA

Author:

Perkins David D1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305

Abstract

ABSTRACT Rapid, effective techniques have been developed for detecting and characterizing chromosome aberrations in Neurospora by visual inspection of ascospores and asci. Rearrangements that are detectable by the presence of deficient, nonblack ascospores in test crosses make up 5 to 10% of survivors after UV doses giving 10-55% survival. Over 135 rearrangements have been diagnosed by classifying unordered asci according to numbers of defective spores. (These include 15 originally identified or analyzed by other workers.) About 100 reciprocal translocations (RT's) have been confirmed and mapped genetically, involving all combinations of the seven chromosomes. Thirty-three other rearrangements generate viable nontandem duplications in meiosis. These consist of insertional translocations (IT's) (15 confirmed), and of rearrangements that involve a chromosome tip (10 translocations and 3 pericentric inversions). No inversion has been found that does not include the centromere. A reciprocal translocation was found within one population in nature. When pairs of RT's that involve the same two chromosome arms were intercrossed, viable duplications were produced if the breakpoints overlapped in such a way that pairing resembled that of insertional translocations (27 combinations).—The rapid analytical technique depends on the following. Deficiency ascospores are usually nonblack (W: "white") and inviable, while nondeficient ascospores, even those that include duplications, are black (B) and viable. Thus RT's typically produce 50% black spores, and IT's 75% black. Asci are shot spontaneously from ripe perithecia, and can be collected in large numbers as groups of eight ascospores representing unordered tetrads, which fall into five classes: 8B:0W; 6B:2W, 4B:4W, 2B:6B, 0B:8W. In isosequential crosses, 90-95% of tetrads are 8:0. When a rearrangement is heterozygous, the frequencies of tetrad classes are diagnostic of the type of rearrangement, and provide information also on the positions of break points. With RT's, 8:0 (alternate centromere segregation) = 0:8 (adjacent-1), 4:4's require interstitial crossing over in a centromere-break point interval, and no 6:2's or 2:6's are expected. With IT's, duplications are viable, 8:0 = 4:4, 6:2's are from interstitial crossing over, 0:8's or 2:6's are rare. Tetrads from RT's that involve a chromosome tip resemble those from IT's, as do tetrads from intercrosses between partially overlapping RT's that involve identical chromosome arms.—Because viable duplications and other aneuploid derivatives regularly occur among the offspring of rearrangements such as insertional translocations, care must be taken in selecting stocks, and original strains should be kept for reference.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3