A complex genetic architecture underlies mandibular evolution in big mice from Gough Island

Author:

Parmenter Michelle D1,Nelson Jacob P1,Gray Melissa M1,Weigel Sara2,Vinyard Christopher J2,Payseur Bret A1

Affiliation:

1. Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA

2. Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA

Abstract

Abstract Some of the most compelling examples of morphological evolution come from island populations. Alterations in the size and shape of the mandible have been repeatedly observed in murid rodents following island colonization. Despite this pattern and the significance of the mandible for dietary adaptation, the genetic basis of island-mainland divergence in mandibular form remains uninvestigated. To fill this gap, we examined mandibular morphology in 609 F2s from a cross between Gough Island mice, the largest wild house mice on record, and mice from a mainland reference strain (WSB). Univariate genetic mapping identifies 3 quantitative trait loci (QTL) for relative length of the temporalis lever arm and 2 distinct QTL for relative condyle length, 2 traits expected to affect mandibular function that differ between Gough Island mice and WSB mice. Multivariate genetic mapping of coordinates from geometric morphometric analyses identifies 27 QTL contributing to overall mandibular shape. Quantitative trait loci show a complex mixture of modest, additive effects dispersed throughout the mandible, with landmarks including the coronoid process and the base of the ascending ramus frequently modulated by QTL. Additive effects of most shape quantitative trait loci do not align with island-mainland divergence, suggesting that directional selection played a limited role in the evolution of mandibular shape. In contrast, Gough Island mouse alleles at QTL for centroid size and QTL for jaw length increase these measures, suggesting selection led to larger mandibles, perhaps as a correlated response to the evolution of larger bodies.

Funder

NIH

Dissertation Completion Fellowship from the UW-Madison Graduate School to MDP

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3