A New Method for Characterizing Replacement Rate Variation in Molecular Sequences: Application of the Fourier and Wavelet Models to Drosophila and Mammalian Proteins

Author:

Morozov Pavel1,Sitnikova Tatyana2,Churchill Gary3,Ayala Francisco José4,Rzhetsky Andrey5

Affiliation:

1. Columbia Genome Center, Columbia University, New York, New York 10032

2. Eisai Research Institute, GEFA Biology Group, Boston, Massachusetts 02138

3. The Jackson Laboratory, Bar Harbor, Maine 04609

4. New York, New York 10013

5. Department of Medical Informatics, Columbia University, New York, New York 10032

Abstract

Abstract We propose models for describing replacement rate variation in genes and proteins, in which the profile of relative replacement rates along the length of a given sequence is defined as a function of the site number. We consider here two types of functions, one derived from the cosine Fourier series, and the other from discrete wavelet transforms. The number of parameters used for characterizing the substitution rates along the sequences can be flexibly changed and in their most parameter-rich versions, both Fourier and wavelet models become equivalent to the unrestricted-rates model, in which each site of a sequence alignment evolves at a unique rate. When applied to a few real data sets, the new models appeared to fit data better than the discrete gamma model when compared with the Akaike information criterion and the likelihood-ratio test, although the parametric bootstrap version of the Cox test performed for one of the data sets indicated that the difference in likelihoods between the two models is not significant. The new models are applicable to testing biological hypotheses such as the statistical identity of rate variation profiles among homologous protein families. These models are also useful for determining regions in genes and proteins that evolve significantly faster or slower than the sequence average. We illustrate the application of the new method by analyzing human immunoglobulin and Drosophilid alcohol dehydrogenase sequences.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference46 articles.

1. A new look at the statistical model identification;Akaike;IEEE Trans. Autom. Contr.,1974

2. Molecular population genetics of the alcohol dehydrogenase locus in the Hawaiian drosophilid D. mimica;Ayala;Mol. Biol. Evol.,1996

3. A model of evolutionary change in proteins;Dayhoff,1978

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3