Affiliation:
1. Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), 06466 Gatersleben, Germany
Abstract
Abstract
We have developed a new technique for the physical mapping of barley chromosomes using microdissected translocation chromosomes for PCR with sequence-tagged site primers derived from >300 genetically mapped RFLP probes. The positions of 240 translocation breakpoints were integrated as physical landmarks into linkage maps of the seven barley chromosomes. This strategy proved to be highly efficient in relating physical to genetic distances. A very heterogeneous distribution of recombination rates was found along individual chromosomes. Recombination is mainly confined to a few relatively small areas spaced by large segments in which recombination is severely suppressed. The regions of highest recombination frequency (≤1 Mb/cM) correspond to only 4.9% of the total barley genome and harbor 47.3% of the 429 markers of the studied RFLP map. The results for barley correspond well with those obtained by deletion mapping in wheat. This indicates that chromosomal regions characterized by similar recombination frequencies and marker densities are highly conserved between the genomes of barley and wheat. The findings for barley support the conclusions drawn from deletion mapping in wheat that for all plant genomes, notwithstanding their size, the marker-rich regions are all of similar gene density and recombination activity and, therefore, should be equally accessible to map-based cloning.
Publisher
Oxford University Press (OUP)
Cited by
252 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献