Affiliation:
1. Faculty of Agriculture, University of Sydney, Sydney, Australia
Abstract
Abstract
Multilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for ~200 generations at a harmonic mean population size of Nh ~65–70. With a simulated population size of N = 50, and a mean selective disadvantage of homozygotes at individual loci ~1–2% or less, it is demonstrated that the mean effective population size over a 200-generation period may be considerably greater than N, with a ratio matching the experimental estimate of Ne/Nh ~1.4. The buildup of associative overdominance at electrophoretic marker loci is largely responsible for the stability of gene frequencies and the observed reduction in the rate of inbreeding, with apparent selection coefficients in favor of the heterozygote at neutral marker loci increasing rapidly over the first N generations of inbreeding to values ~5–10%. The observed decline in fitness under competitive conditions in populations of size ~50 in D. melanogaster therefore primarily results from mutant alleles with mean effects on fitness as homozygotes of sm ≤ 0.02. Models with deleterious recessive mutants at the background loci require that the mean selection coefficient against heterozygotes is at most hsm ~0.002, with a minimum mutation rate for a single Drosophila autosome 100 cM in length estimated to be in the range 0.05–0.25, assuming an exponential distribution of s. A typical chromosome would be expected to carry at least 100–200 such mutant alleles contributing to the decline in competitive fitness with slow inbreeding.
Publisher
Oxford University Press (OUP)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献