Genetic Analysis of a Y-Chromosome Region That Induces Triplosterile Phenotypes and Is Essential for Spermatid Individualization in Drosophila melanogaster

Author:

Timakov Benjamin1,Zhang Ping

Affiliation:

1. Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-2131

Abstract

Abstract The heterochromatic Y chromosome of Drosophila melanogaster contains ~40 Mb of DNA but has only six loci mutable to male sterility. Region h1-h9 on YL, which carries the kl-3 and kl-5 loci, induces male sterility when present in three copies. We show that three separate segments within the region are responsible for the triplosterility and have an additive effect on male fertility. The triplosterile males displayed pleiotropic defects, beginning at early postmeiotic stages. However, the triplosterility was unaffected by kl-3 or kl-5 alleles. These data suggest that region h1-h9 is complex and may contain novel functions in addition to those of the previously identified kl-3 and kl-5 loci. The kl-3 and kl-5 mutations as well as deficiencies within region h1-h9 result in loss of the spermatid axonemal outer dynein arms. Examination using fluorescent probes showed that males deficient for h1-h3 or h4-h9 displayed a postmeiotic lesion with disrupted individualization complexes scattered along the spermatid bundle. In contrast, the kl-3 and kl-5 mutations had no effect on spermatid individualization despite the defect in the axonemes. These results demonstrate that region h1-h9 carries genetically separable functions: one required for spermatid individualization and the other essential for assembling the axonemal dynein arms.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference51 articles.

1. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila;Appels;Int. Rev. Cytol.,1978

2. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationship between satellite sequences and fertility factors;Bonaccorsi;Genetics,1991

3. Y chromosome loops in Drosophila melanogaster;Bonaccorsi;Genetics,1988

4. Transcription of a satellite DNA on two Y chromosome loops of Drosophila melanogaster;Bonaccorsi;Chromosoma,1990

5. Non-disjunction as proof of the chromosome theory of heredity;Bridges;Genetics,1916

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3