Ion transport peptide regulates energy intake, expenditure, and metabolic homeostasis in Drosophila

Author:

Gáliková Martina12ORCID,Klepsatel Peter13ORCID

Affiliation:

1. Institute of Zoology, Slovak Academy of Sciences , 845 06 Bratislava, Slovakia

2. Department of Zoology, Stockholm University , 106 91 Stockholm, Sweden

3. Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences , 840 05 Bratislava, Slovakia

Abstract

Abstract In mammals, energy homeostasis is regulated by the antagonistic action of hormones insulin and glucagon. However, in contrast to the highly conserved insulin, glucagon is absent in most invertebrates. Although there are several endocrine regulators of energy expenditure and catabolism (such as the adipokinetic hormone), no single invertebrate hormone with all of the functions of glucagon has been described so far. Here, we used genetic gain- and loss-of-function experiments to show that the Drosophila gene Ion transport peptide (ITP) codes for a novel catabolic regulator that increases energy expenditure, lowers fat and glycogen reserves, and increases glucose and trehalose. Intriguingly, Ion transport peptide has additional functions reminiscent of glucagon, such as inhibition of feeding and transit of the meal throughout the digestive tract. Furthermore, Ion transport peptide interacts with the well-known signaling via the Adipokinetic hormone; Ion transport peptide promotes the pathway by stimulating Adipokinetic hormone secretion and transcription of the receptor AkhR. The genetic manipulations of Ion transport peptide on standard and Adipokinetic hormone-deficient backgrounds showed that the Adipokinetic hormone peptide mediates the hyperglycemic and hypertrehalosemic effects of Ion transport peptide, while the other metabolic functions of Ion transport peptide seem to be Adipokinetic hormone independent. In addition, Ion transport peptide is necessary for critical processes such as development, starvation-induced foraging, reproduction, and average lifespan. Altogether, our work describes a novel master regulator of fly physiology with functions closely resembling mammalian glucagon.

Funder

Slovak Academy of Sciences

Slovak Research and Development Agency

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3