Crustal velocity structure across the Orphan Basin and Orphan Knoll to the continent–ocean transition, offshore Newfoundland, Canada

Author:

Welford J Kim1ORCID,Dehler Sonya A2,Funck Thomas3

Affiliation:

1. Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada

2. Natural Resources Canada, Geological Survey of Canada, Calgary, Alberta, Canada

3. Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Abstract

SUMMARY Orphan Basin, a massive deepwater rifted basin off the northeastern coast of Newfoundland, was one of the targets of the 2009 SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) experiment to collect refraction/wide-angle reflection (RWAR) data from the Bonavista Platform, through the Orphan Basin, to the Orphan Knoll, and beyond into oceanic crust. Both the data from an earlier RWAR acquisition and the new data were jointly analysed in order to improve on the earlier velocity model and extend its coverage landward and seaward. The resulting velocity model is characterized by an 8–9-km-thick sedimentary package immediately outboard of the Bonavista Platform, which thins toward the Orphan Knoll and beyond. The shallowest modelled sedimentary layer, interpreted as Paleocene and younger post-rift sediments, does not show significant thickness variations and velocities do not exceed 3.3 km s–1. The second modelled sedimentary layer with laterally variable velocities ranging from 2.3 to 5.3 km s–1, interpreted as Late Cretaceous post-rift sediments, is thickest over an interpreted failed rift. The deepest modelled sedimentary layer consists of laterally variable velocities that do not exceed 5.9 km s–1 and is interpreted as possibly Jurassic to Early Cretaceous syn-rift sediments. The crust beneath the Bonavista Platform is subdivided into an upper (5.4–5.9 km s–1), middle (5.9–6.4 km s–1) and lower crust (6.4–6.9 km s–1). The middle crust is modelled as disappearing beneath the seaward limit of the Bonavista Platform at an interpreted failed rift, only to re-appear 100 km further seaward beneath the central Orphan Basin and extend to the seaward limit of the Orphan Knoll, beyond which the crust can be modelled by just an upper (5.0–6.7 km s–1) and a lower (6.7–7.0 km s–1) crustal layer. Towards land, for the first 450 km of the model, velocities generally follow the globally averaged velocity trend for rifted continental crust, albeit with slightly elevated velocities suggestive of magmatic contributions. At the failed rift, within the continental domain, hyperextended crust is modelled, overlying a limited zone of serpentinized mantle. Seaward of Orphan Knoll, the interpretation for the velocity structure is less definitive but an 80-km-wide continent–ocean transition zone consisting of either transitional embryonic oceanic crust or thinned continental crust overlying serpentinized mantle is proposed. Upper mantle velocities as low as 7.7 km s–1 are modelled beneath the interpreted failed continental rift as well as beneath the continent–ocean transition zone, while the rest of the crustal model is underlain by typical mantle velocities of 8 km s–1. Analysis of extension and thinning factors based on the velocity model reveal that the failed rift experienced hyperextension and should have achieved full crustal embrittlement, consistent with localized mantle serpentinization.

Funder

Government of Canada

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3