Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran

Author:

Shcherbakova V V1,Bakhmutov V G2,Thallner D3,Shcherbakov V P14,Zhidkov G V1,Biggin A J3

Affiliation:

1. GO Borok IPE RAS, Borok, Yaroslavl, +74854724243 Russian Federation

2. Institute of Geophysics of the National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine

3. Dept. Earth, Ocean and Ecological Sciences, University of Liverpool, L69 3BX, UK

4. Institute of Geology and Petroleum Technologies, Kazan (Volga region) Federal University, 420008, Russia

Abstract

SUMMARY The time-averaged geomagnetic field is generally purported to be uniformitarian across Earth history—close to a geocentric axial dipole, with average strength within one order of magnitude of that at present. Nevertheless, recent studies have reported that the field was approximately ten times weaker than present in the mid-Palaeozoic (∼410–360 Ma) and late Ediacaran (∼565 Ma). Here we present the first whole-rock palaeointensity determinations of Ediacaran age outside of Laurentia. These were obtained by the Thellier-Coe, Wilson and microwave methods for basaltic rocks of 560–580 Ma age of the Ediacaran traps, southwestern margin of the East European Craton, Ukraine. All four studied sites showed extremely low instantaneous field values of (3–7) μT with corresponding VDMs of (0.4–1) × 1022 Am2. Summarizing all available data, the Ediacaran field appears to be anomalously characterized by ultra-low dipole moment and ultra-high reversal frequency. According to some geodynamo models, this state could indicate a weak dipole field regime prior to the nucleation of the solid inner core. However, given that ultra-low field intensities have also been detected in the Devonian, and that virtually no palaeointensity data exist for the intervening ∼150 Ma, the date of inner core nucleation remains extremely uncertain. Our new evidence of persistent ultra-weak magnetospheric shielding in the Ediacaran may be considered consistent with the recently hypothesized link between enhanced UV-B radiation in this interval and the subsequent Cambrian evolutionary radiation.

Funder

RFBR

NERC

Leverhulme Trust

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3