Inversion of marine controlled source electromagnetic data using a parallel non-dominated sorting genetic algorithm

Author:

Ayani Mohit1,MacGregor Lucy2,Mallick Subhashis1

Affiliation:

1. Department of Geology & Geophysics, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA

2. Edinburgh Geoscience Advisors Ltd, Edinburgh, UK

Abstract

SUMMARY We developed a multi-objective optimization method for inverting marine controlled source electromagnetic data using a fast-non-dominated sorting genetic algorithm. Deterministic methods for inverting electromagnetic data rely on selecting weighting parameters to balance the data misfit with the model roughness and result in a single solution which do not provide means to assess the non-uniqueness associated with the inversion. Here, we propose a robust stochastic global search method that considers the objective as a two-component vector and simultaneously minimizes both components: data misfit and model roughness. By providing an estimate of the entire set of the Pareto-optimal solutions, the method allows a better assessment of non-uniqueness than deterministic methods. Since the computational expense of the method increases as the number of objectives and model parameters increase, we parallelized our algorithm to speed up the forward modelling calculations. Applying our inversion to noisy synthetic data sets generated from horizontally stratified earth models for both isotropic and anisotropic assumptions and for different measurement configurations, we demonstrate the accuracy of our method. By comparing the results of our inversion with the regularized genetic algorithm, we also demonstrate the necessity of casting this problem as a multi-objective optimization for a better assessment of uncertainty as compared to a scalar objective optimization method.

Funder

National Science Foundation

National Center for Atmospheric Research

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3