3-D seismic attenuation structure of Long Valley caldera: looking for melt bodies in the shallow crust

Author:

Prudencio Janire12,Manga Michael34

Affiliation:

1. Department of Theoretical physics and Cosmos, Physics of the Earth area, University of Granada, Profesor Clavera 12, 18071 Granada, Spain

2. Instituto Andaluz de Geofisica, University of Granada, Campus de Cartuja, Granada, Spain

3. Department of Earth and Planetary Science, University of California at Berkeley, 307 McCone Hall, Berkeley, CA 94720, USA

4. Berkeley Seismological Laboratory, University of California-Berkeley, 215 McCone Hall, Berkeley, CA 94720, USA

Abstract

SUMMARY Unrest at Long Valley caldera (California) during the past few decades has been attributed to the ascent of hydrothermal fluids or magma recharge. The difference is critical for assessing volcanic hazard. To better constrain subsurface structures in the upper crust and to help distinguish between these two competing hypotheses for the origin of unrest, we model the 3-D seismic attenuation structure because attenuation is particularly sensitive to the presence of melt. We analyse more than 47 000 vertical component waveforms recorded from January 2000 through November 2016 obtained from the Northern California Earthquake Data Center. We then inverted the S-to-coda energy ratios using the coda normalization method and obtained an average Q of 250. Low attenuation anomalies are imaged in the fluid-rich western and eastern areas of the caldera, one of which corresponds to the location of an earthquake swarm that occurred in 2014. From a comparison with other geophysical images (magnetotellurics, seismic tomography) we attribute the high attenuation anomalies to hydrothermal systems. Average to high attenuation values are also observed at Mammoth Mountain (southwest of the caldera), and may also have a hydrothermal origin. A large high attenuation anomaly within the caldera extends from the surface to the depths we can resolve at 9 km. Shallow rocks here are cold and this is where earthquakes occur. Together, these observations imply that the high attenuation region is not imaging a large magma body at shallow depths nor do we image any isolated high attenuation bodies in the upper ≈8 km that would be clear-cut evidence for partially molten bodies such as sills or other magma bodies.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3