Effective properties of a porous medium with aligned cracks containing compressible fluid

Author:

Song Yongjia12,Hu Hengshan1,Han Bo2

Affiliation:

1. Department of Astronautic Science and Mechanics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China

2. Department of Mathematics, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China

Abstract

SUMMARY Understanding the wave propagation in fluid-saturated cracked rocks is important for detecting and characterizing cracked reservoirs and fault zones with applications in geomechanics, hydrogeology, exploration geophysics and reservoir engineering. In sedimentary rocks, microscopic-scale pores are usually filled with fluid. One logical means of modelling the essential features of such rocks is to use poroelasticity theory. But previous models of wave propagation in cracked porous medium are either restricted to low frequencies at which effects of the elastic scattering (scattering into fast-P and S waves via mode conversion at the crack faces) are negligible or to the case that the crack-filling fluid is assumed to be incompressible. To overcome these restrictions, we consider the effects of crack fluid compressibility by extending spring condition into poroelasticity and derive exact solutions of the scattering problem of an incident P wave by a circular crack containing compressible fluid in a porous medium. Based on the solutions, we develop two different effective medium models to estimate frequency-dependent effective velocity and attenuation in a fluid-saturated porous rock with a set of aligned cracks. The mixed-boundary value problem reveals that both the wave-induced fluid flow (WIFF) and elastic wave scattering can cause important velocity dispersion and attenuation. The diffusion-type WIFF dominates the velocity change and attenuation for the low frequency range, while the elastic scattering dominates them for the relatively higher frequency range. The dependences of the P-wave velocity on the crack fluid compressibility are different at different frequencies. For the WIFF-dominated frequency range and Rayleigh-scattering frequency range, the P-wave velocity decreases with the crack fluid compressibility. In contrast, for the Mie scattering frequency range, the opposite occurs (the P-wave velocity increases with the crack fluid compressibility).

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovation Talents of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3