Affiliation:
1. Department of Physics and Astronomy, University of Bologna, Italy
Abstract
Summary
In this paper we model the crack growth in an elastic medium constituted by two welded half-spaces with different rigidities. We implement a 2D Boundary Element Method (BEM) computing shear and normal tractions acting on the crack and the slip accommodating stress drop from an arbitrary initial configuration to a final frictional configuration. The direction of crack growth follows the criterion of maximum energy release (strain and gravitational energy) provided that it overcomes the surface fracture energy and the work dissipated by friction. The energetic criterion leads to estimates of the dip angle of seismic faults depending on the amplitude of the initial stress and it includes the classical Anderson's results as a particular case. Moreover, in presence of a sharp rigidity contrast, the direction of crack growth is strongly deflected. The model simulates non-planar, complex, fault geometries, as in the case of detachment and listric faults and it explains the increase of dip angles for both normal and reverse faults, when they enter soft sedimentary layers.
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献