An investigation into the sensitivity of postglacial decay times to uncertainty in the adopted ice history

Author:

Kuchar Joseph1,Milne Glenn2,Hill Alexander2,Tarasov Lev3,Nordman Maaria45

Affiliation:

1. Department of Physics, University of Ottawa

2. Department of Earth and Environmental Science, University of Ottawa

3. Department of Physics and Physical Oceanography, Memorial University of Newfoundland

4. Finnish Geospatial Research Institute, National Land Survey of Finland

5. Department of Built Environment, School of Engineering, Aalto University

Abstract

Abstract At the centers of previously glaciated regions such as Hudson Bay in Canada and the Gulf of Bothnia in Fennoscandia, it has been observed that the sea level history follows an exponential form and that the associated decay time is relatively insensitive to uncertainty in the ice loading history. We revisit the issue of decay time sensitivity by computing relative sea level histories for Richmond Gulf and James Bay in Hudson Bay and Ångerman River in Sweden for a suite of reconstructions of the North American and Fennoscandian Ice Sheets and Earth viscosity profiles. We find that while some Earth viscosity models do indeed show insensitivity in computed decay times to the ice history, this is not true in all cases. Moreover, we find that the location of the study site relative to the geometry of the ice sheet is an important factor in determining ice sensitivity, and based on our set of ice sheet reconstructions, conclude that the location of James Bay is not well-suited to a decay time analysis. We describe novel corrections to the RSL data to remove the effects associated with the spatial distribution of sea level indicators as well as for other signals unrelated to regional ice loading (ocean loading, rotation and global mean sea-level changes) and demonstrate that they can significantly affect the inference of viscosity structure. We performed a forward modelling analysis based on a commonly adopted 2-layer, sub-lithosphere viscosity structure to determine how the solution space of viscosity models changes with the input ice history at the three study sites. While the solution spaces depend on ice history, for both Richmond Gulf and Ångerman River there are regions of parameter space where solutions are common across all or most ice histories, indicating low ice load sensitivity for these mantle viscosity parameters. For example, in Richmond Gulf, upper mantle viscosity values of (0.3–0.5)x1021 Pa s and lower mantle viscosity values of (5–50)x1021 Pa s tend to satisfy the data constraint consistently for most ice histories considered in this study. Similarly, the Ångerman River solution spaces contain a solution with an upper mantle viscosity of 0.3 × 1021 Pa s and lower mantle viscosity values of (5–50)x1021 Pa s common to 9 of the 10 ice histories considered there. However, the dependence of the viscosity solution space on ice history suggests that joint estimation of ice and Earth parameters is the optimal approach.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3