A New Test for Multiple Predictive Regression

Author:

Xu Ke-Li1ORCID,Guo Junjie2

Affiliation:

1. Indiana University , USA

2. Central University of Finance and Economics , China

Abstract

Abstract We consider inference for predictive regressions with multiple predictors. Extant tests for predictability (especially for joint predictability) may perform unsatisfactorily and tend to discover spurious predictability as the number of predictors increases. We propose a battery of new instrumental variables-based tests which involve enforcement or partial enforcement of the null hypothesis in variance estimation. A test based on the few-predictors-at-a-time parsimonious system approach is recommended. Empirical Monte Carlos demonstrates the remarkable finite-sample performance regardless of numerosity of predictors and their persistence properties. Empirical application to equity premium predictability is provided.

Funder

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference70 articles.

1. Multiple-Predictor Regressions: Hypothesis Testing;Amihud;Review of Financial Studies,2009

2. Many Instruments and/or Regressors: A Friendly Guide;Anatolyev;Journal of Economic Surveys,2019

3. The Pricing of Tail Risk and the Equity Premium: Evidence from International Option Markets;Andersen;Journal of Business & Economic Statistics,2020

4. Consistent Inference for Predictive Regressions in Persistent Economic Systems;Andersen;Journal of Econometrics,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Test on Asset Return Predictability with Structural Breaks;Journal of Financial Econometrics;2023-06-02

2. NEW ROBUST INFERENCE FOR PREDICTIVE REGRESSIONS;Econometric Theory;2023-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3