Forecasting under Long Memory

Author:

Hassler Uwe1,Pohle Marc-Oliver2ORCID

Affiliation:

1. Goethe University Frankfurt

2. Goethe University Frankfurt

Abstract

Abstract Motivated by the mixed evidence in the literature on forecasting long memory processes, we show that methods based on fractional integration are superior to alternatives not accounting for long memory by simulations and applications to classical long memory time series from macroeconomics and finance. Furthermore, we analyze the optimal implementation of these methods, among others comparing parametric and local and global semiparametric estimators of the long memory parameter, providing asymptotic theory on different mean estimators and assessing the use of a fixed long memory parameter to overcome the inherent difficulties of its estimation.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference72 articles.

1. Nonstationarity-Extended Local Whittle Estimation;Abadir;Journal of Econometrics,2007

2. On Large-Sample Estimation for the Mean of a Stationary Random Sequence;Adenstedt;Annals of Statistics,1974

3. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts;Andersen;International Economic Review,1998

4. The Distribution of Realized Stock Return Volatility;Andersen;Journal of Financial Economics,2001

5. Modeling and Forecasting Realized Volatility;Andersen;Econometrica,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3