Affiliation:
1. Google Brain
2. Stanford University
3. University of Illinois
Abstract
Abstract
We examine the behavior of mortgage borrowers over several economic cycles using an unprecedented dataset of origination and monthly performance records for over 120 million mortgages originated across the United States between 1995 and 2014. Our deep learning model of multi-period mortgage delinquency, foreclosure, and prepayment risk uncovers the highly nonlinear influence on borrower behavior of an exceptionally broad range of loan-specific and macroeconomic variables down to the zip-code level. In particular, most variables strongly interact. Prepayments involve the greatest nonlinear effects among all events. We demonstrate the significant implications of the nonlinearities for risk management, investment management, and mortgage-backed securities.
Funder
National Science Foundation
Amazon Web Services in Education Grant award
Publisher
Oxford University Press (OUP)
Subject
Economics and Econometrics,Finance
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献