Realized Volatility Forecasting with Neural Networks

Author:

Bucci Andrea12

Affiliation:

1. Università Politecnica delle Marche

2. Università degli Studi G. d’Annunzio Chieti e Pescara

Abstract

Abstract In the last few decades, a broad strand of literature in finance has implemented artificial neural networks as a forecasting method. The major advantage of this approach is the possibility to approximate any linear and nonlinear behaviors without knowing the structure of the data generating process. This makes it suitable for forecasting time series which exhibit long-memory and nonlinear dependencies, like conditional volatility. In this article, the predictive performance of feed-forward and recurrent neural networks (RNNs) was compared, particularly focusing on the recently developed long short-term memory (LSTM) network and nonlinear autoregressive model process with eXogenous input (NARX) network, with traditional econometric approaches. The results show that RNNs are able to outperform all the traditional econometric methods. Additionally, capturing long-range dependence through LSTM and NARX models seems to improve the forecasting accuracy also in a highly volatile period.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference72 articles.

1. The Distribution of Realized Stock Return Volatility;Andersen;Journal of Financial Economics,2001

2. GARCH Based Artificial Neural Networks in Forecasting Conditional Variance of Stock Returns;Arnerić;Croatian Operational Research Review,2014

3. Computation and Analysis of Multiple Structural Change Models;Bai;Journal of Applied Econometrics,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3