Affiliation:
1. Université Namur
2. Université Laval
3. CeReFiM, NaXys and CRREPl
4. UQAM
Abstract
Abstract
Change-point (CP) processes are one flexible approach to model long time series. We propose a method to uncover which model parameters truly vary when a CP is detected. Given a set of breakpoints, we use a penalized likelihood approach to select the best set of parameters that changes over time and we prove that the penalty function leads to a consistent selection of the true model. Estimation is carried out via the deterministic annealing expectation-maximization algorithm. Our method accounts for model selection uncertainty and associates a probability to all the possible time-varying parameter specifications. Monte Carlo simulations highlight that the method works well for many time series models including heteroskedastic processes. For a sample of fourteen hedge fund (HF) strategies, using an asset-based style pricing model, we shed light on the promising ability of our method to detect the time-varying dynamics of risk exposures as well as to forecast HF returns.
Publisher
Oxford University Press (OUP)
Subject
Economics and Econometrics,Finance
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Linking Frequentist and Bayesian Change-Point Methods;Journal of Business & Economic Statistics;2023-12-15