Affiliation:
1. University of Duisburg-Essen
Abstract
Abstract
We develop central limit theory for tail risk forecasts in general location–scale models. We do so for a wide range of risk measures, viz. distortion risk measures (DRMs) and expectiles. Two popular members of the class of DRMs are the Value-at-Risk and the Expected Shortfall. The forecasts we consider are motivated by a Pareto-type tail assumption for the innovations and allow for extrapolation beyond the range of available observations. Simulations reveal adequate coverage of the forecast intervals derived from the limit theory. An empirical application demonstrates that our estimators outperform nonparametric alternatives when forecasting extreme risk in sufficiently large samples.
Publisher
Oxford University Press (OUP)
Subject
Economics and Econometrics,Finance
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献