News and Idiosyncratic Volatility: The Public Information Processing Hypothesis*

Author:

Engle Robert F1,Hansen Martin Klint2,Karagozoglu Ahmet K3,Lunde Asger4

Affiliation:

1. New York University

2. Novo Nordisk

3. Hofstra University; New York University

4. CREATES, Aarhus University

Abstract

Abstract Motivated by the recent availability of extensive electronic news databases and advent of new empirical methods, there has been renewed interest in investigating the impact of financial news on market outcomes for individual stocks. We develop the information processing hypothesis of return volatility to investigate the relation between firm-specific news and volatility. We propose a novel dynamic econometric specification and test it using time series regressions employing a machine learning model selection procedure. Our empirical results are based on a comprehensive dataset comprised of more than 3 million news items for a sample of 28 large U.S. companies. Our proposed econometric specification for firm-specific return volatility is a simple mixture model with two components: public information and private processing of public information. The public information processing component is defined by the contemporaneous relation with public information and volatility, while the private processing of public information component is specified as a general autoregressive process corresponding to the sequential price discovery mechanism of investors as additional information, previously not publicly available, is generated and incorporated into prices. Our results show that changes in return volatility are related to public information arrival and that including indicators of public information arrival explains on average 26% (9–65%) of changes in firm-specific return volatility.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference71 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning in accounting and finance research: a literature review;Review of Quantitative Finance and Accounting;2024-06-07

2. Jump Clustering, Information Flows, and Stock Price Efficiency;Journal of Financial Econometrics;2024-04-26

3. Sentiment matters: the effect of news-media on spillovers among cryptocurrency returns;The European Journal of Finance;2024-03-11

4. Not all words are equal: Sentiment and jumps in the cryptocurrency market;Journal of International Financial Markets, Institutions and Money;2024-03

5. Portfolio Size, Portfolio Composition, and the Skewness of Returns;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3