Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error

Author:

Barendse Sander1ORCID,Kole Erik2,van Dijk Dick3

Affiliation:

1. Department of Economics, University of Oxford, and Nuffield College, University of Oxford

2. Econometric Institute, Erasmus University Rotterdam, and Tinbergen Institute

3. Econometric Institute, Erasmus University Rotterdam, Tinbergen Institute, and Erasmus Research Institute of Management

Abstract

Abstract We investigate the effect of estimation error on backtests of expected shortfall (ES) forecasts. These backtests are based on first-order conditions of a recently introduced family of jointly consistent loss functions for value-at-risk (VaR) and ES. For both single and multiperiod horizons, we provide explicit expressions for the additional terms in the asymptotic covariance matrix that result from estimation error, and propose robust tests that account for it. Monte Carlo experiments show that the tests that ignore these terms suffer from size distortions, which are more pronounced for higher ratios of out-of-sample to in-sample observations. Robust versions of the backtests perform well with power against common alternatives. We also introduce a novel standardization of the conditional joint test statistic that removes the need to estimate higher-order moments and significantly improves its performance. In an application to VaR and ES forecasts for daily FTSE 100 index returns as generated by (GJR-)GARCH and HEAVY models, we find that estimation error substantially impacts the outcome of the backtests, and is not bound to particular subperiods such as the credit crisis.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference39 articles.

1. Back-Testing Expected Shortfall;Acerbi;Risk,2014

2. On the Coherence of Expected Shortfall;Acerbi;Journal of Banking & Finance,2002

3. Thinking Coherently;Artzner;Risk,1997

4. Coherent Measures of Risk;Artzner;Mathematical Finance,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3