Estimation of an Order Book Dependent Hawkes Process for Large Datasets

Author:

Mucciante Luca1,Sancetta Alessio1ORCID

Affiliation:

1. Department of Economics, Royal Holloway University of London , Egham, TW20 0EX, UK

Abstract

Abstract A point process for event arrivals in high-frequency trading is presented. The intensity is the product of a Hawkes process and high-dimensional functions of covariates derived from the order book. Conditions for stationarity of the process are stated. An algorithm is presented to estimate the model even in the presence of billions of data points, possibly mapping covariates into a high-dimensional space. Large sample sizes can be common for high-frequency data applications using multiple instruments. Consistency results under weak conditions are established. A test statistic to assess out of sample performance of different model specifications is suggested. The methodology is applied to the study of four stocks that trade on the New York Stock Exchange. The out of sample testing procedure suggests that capturing the nonlinearity of the order book information adds value to the self-exciting nature of high-frequency trading events.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference34 articles.

1. Binarsity: A Penalization for One-Hot Encoded Features in Linear Supervised Learning;Alaya;Journal of Machine Learning Research,2019

2. Modelling Financial High Frequency Data Using Point Processes

3. On the Convergence of Block Coordinate Descent Type Methods;Beck;SIAM Journal on Optimization,2013

4. Stability of Nonlinear Hawkes Processes;Brémaud;Annals of Probability,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3