Fourth Moment Structure of Markov Switching Multivariate GARCH Models

Author:

Cavicchioli Maddalena1

Affiliation:

1. University of Modena and Reggio Emilia

Abstract

Abstract We derive sufficient conditions for the existence of second and fourth moments of Markov switching multivariate generalized autoregressive conditional heteroscedastic processes in the general vector specification. We provide matrix expressions in closed form for such moments, which are obtained by using a Markov switching vector autoregressive moving-average representation of the initial process. These expressions are shown to be readily programmable in addition of greatly reducing the computational cost. As theoretical applications of the results, we derive the spectral density matrix of the squares and cross products, propose a new definition of multivariate kurtosis measure to recognize heavy-tailed features in financial real data, and provide a matrix expression in closed form of the impulse-response function for the volatility. An empirical example illustrates the results.

Funder

FAR

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference25 articles.

1. Multivariate Mixed Normal Conditional Heteroskedasticity;Bauwens;Computational Statistics and Data Analysis,2007

2. Theory and Inference for a Markov Switching GARCH Model;Bauwens;Econometrics Journal,2010

3. Generalized Autoregressive Conditional Heteroskedasticity;Bollerslev;Journal of Econometrics,1986

4. Higher Order Moments of Markov Switching VARMA Models;Cavicchioli;Econometric Theory,2017

5. Asymptotic Theory for Multivariate GARCH Processes;Comte;Journal of Multivariate Analysis,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are Sustainability Indices Infected by the Volatility of Stock Indices? Analysis before and after the COVID-19 Pandemic;Sustainability;2022-11-20

2. Spectral analysis for GARCH processes through a bilinear representation;Communications in Statistics - Theory and Methods;2022-02-17

3. Representing Koziol’s Kurtoses;Mathematical and Statistical Methods for Actuarial Sciences and Finance;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3