Nanoparticles separation by different conditions at asymmetric flow field-flow fractionation

Author:

Chiang C L12ORCID,Yeh C W1

Affiliation:

1. Flow and Energy Research Laboratory, Center for Measurement Standards, Industrial Technology Research Institute , Hsinchu , Taiwan, ROC

2. National Tsing Hua University, Institute of Nanoengineering and Microsystems , Hsinchu , Taiwan, ROC

Abstract

Abstract As semiconductor manufacturing enters the era of sub-10 nm and 3D stacking, “cleanliness” in the process becomes a crucial factor for process yield. The measurement of nanoparticle concentration, size, and shape in various solutions that may cause contamination during the manufacturing process is currently an important research topic. Although there are various nanoparticle measurement techniques available, further technological development and breakthroughs are still needed for measuring low concentrations and complex mixtures of nanoparticles. Therefore, in this study, we attempted to address the measurement challenges posed by mixed particles by applying asymmetric flow field-flow fractionation in combination with dynamic light scattering and ultraviolet. The strategy involved separating the samples before measurement. For a nanomixture containing five different sizes of gold nanoparticles with diameters of 20, 40, 60, 80, and 100 nm, three different methods were employed to control the driving force for particle separation during the elution stage: constant cross flow rate, linearly decreasing cross flow rate, and exponentially decreasing cross flow rate. The results demonstrated that different flow rate control methods indeed yielded variations in nanoparticle separation, with the constant flow rate method showing the best separation efficiency. Additionally, it was observed that the thickness of the experimental chamber played a significant role in affecting the retention time of the nanoparticles during separation.

Funder

Industrial Technology Research Institute

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3