The characteristics of mRNA m6A methylomes in allopolyploid Brassica napus and its diploid progenitors

Author:

Li Zeyu1,Li Mengdi12,Wu Xiaoming3,Wang Jianbo1

Affiliation:

1. Wuhan University State Key Laboratory of Hybrid Rice, College of Life Sciences, , Wuhan 430072, Hubei, China

2. College of Life Sciences Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, , Northwest University, Xi’an 710069, China

3. Oil Crops Research Institute of CAAS Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, , Wuhan 430062, China

Abstract

Abstract Genome duplication events, comprising whole-genome duplication and single-gene duplication, produce a complex genomic context leading to multiple levels of genetic changes. However, the characteristics of m6A modification, the most widespread internal eukaryotic mRNA modification, in polyploid species are still poorly understood. This study revealed the characteristics of m6A methylomes within the early formation and following the evolution of allopolyploid Brassica napus. We found a complex relationship between m6A modification abundance and gene expression level depending on the degree of enrichment or presence/absence of m6A modification. Overall, the m6A genes had lower gene expression levels than the non-m6A genes. Allopolyploidization may change the expression divergence of duplicated gene pairs with identical m6A patterns and diverged m6A patterns. Compared with duplicated genes, singletons with a higher evolutionary rate exhibited higher m6A modification. Five kinds of duplicated genes exhibited distinct distributions of m6A modifications in transcripts and gene expression level. In particular, tandem duplication-derived genes showed unique m6A modification enrichment around the transcript start site. Active histone modifications (H3K27ac and H3K4me3) but not DNA methylation were enriched around genes of m6A peaks. These findings provide a new understanding of the features of m 6A modification and gene expression regulation in allopolyploid plants with sophisticated genomic architecture.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3