Understanding water conservation vs. profligation traits in vegetable legumes through a physio-transcriptomic-functional approach

Author:

Fang Pingping1,Sun Ting1,Pandey Arun Kumar1,Jiang Libo2,Wu Xinyang1,Hu Yannan1,Cheng Shiping3,Li Mingxuan1,Xu Pei14ORCID

Affiliation:

1. China Jiliang University College of Life Sciences, , Xueyuan Street No.258, Hangzhou 310018, China

2. Shandong University of Technology School of Life Sciences and Medicine, , Xincun West Road No.255, Zibo 255000, China

3. Pingdingshan University Henan Provincial Key Lab of Germplasm Innovation and Utilization of Eco-economic Woody Plant, , Weilai Street No.1, Pingdingshan 467000, China

4. Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang , China Jiliang University, Xueyuan Street No.258, Hangzhou 310018, China

Abstract

AbstractVegetable soybean and cowpea are related warm-season legumes showing contrasting leaf water use behaviors under similar root drought stresses, whose mechanisms are not well understood. Here we conducted an integrative phenomic-transcriptomic study on the two crops grown in a feedback irrigation system that enabled precise control of soil water contents. Continuous transpiration rate monitoring demonstrated that cowpea used water more conservatively under earlier soil drought stages, but tended to maintain higher transpiration under prolonged drought. Interestingly, we observed a soybean-specific transpiration rate increase accompanied by phase shift under moderate soil drought. Time-series transcriptomic analysis suggested a dehydration avoidance mechanism of cowpea at early soil drought stage, in which the VuHAI3 and VuTIP2;3 genes were suggested to be involved. Multifactorial gene clustering analysis revealed different responsiveness of genes to drought, time of day and their interactions between the two crops, which involved species-dependent regulation of the circadian clock genes. Gene network analysis identified two co-expression modules each associated with transpiration rate in cowpea and soybean, including a pair of negatively correlated modules between species. Module hub genes, including the ABA-degrading gene GmCYP707A4 and the trehalose-phosphatase/synthase gene VuTPS9 were identified. Inter-modular network analysis revealed putative co-players of the hub genes. Transgenic analyses verified the role of VuTPS9 in regulating transpiration rate under osmotic stresses. These findings propose that species-specific transcriptomic reprograming in leaves of the two crops suffering similar soil drought was not only a result of the different drought resistance level, but a cause of it.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3