Identification and characterization of CsSRP43, a major gene controlling leaf yellowing in cucumber

Author:

Zhang Tingting12,Dong Xiangyu12,Yuan Xin12,Hong Yuanyuan12,Zhang Lingling12,Zhang Xuan12,Chen Shuxia12

Affiliation:

1. College of Horticulture , Northwest A&F University, Yangling 712100, Shaanxi, China

2. Shaanxi Engineering Research Center for Vegetables , Yangling 712100, China

Abstract

Abstract Mutants are crucial to extending our understanding of genes and their functions in higher plants. In this study a spontaneous cucumber mutant, yf, showed yellow color leaves, had significant decreases in related physiological indexes of photosynthesis characteristics, and had more abnormal chloroplasts and thylakoids. Inheritance analysis indicated that the yellow color of the leaf was controlled by a recessive nuclear locus, yf. A candidate gene, CsSRP43, encoding a chloroplast signal recognition particle 43 protein, was identified through map-based cloning and whole-genome sequence analysis. Alignment of the CsSRP43 gene homologs between both parental lines revealed a 7-kb deletion mutation including the promoter region and the coding sequence in the yf mutant. In order to determine if the CsSRP43 gene was involved in the formation of leaf color, the CRISPR/Cas9-mediate system was used to modify CsSRP43 in the 9930 background; two independent transgenic lines, srp43-1 and srp43-2, were generated, and they showed yellow leaves with abnormal chloroplasts and thylakoids. Transcriptomic analysis revealed that differentially expressed genes associated with the photosynthesis-related pathway were highly enriched between srp43-1 and wild type, most of which were significantly downregulated in line srp43-1. Furthermore, yeast two-hybrid and biomolecular fluorescence complementation assays were used to confirm that CsSRP43 directly interacted with LHCP and cpSRP54 proteins. A model was established to explain the molecular mechanisms by which CsSRP43 participates in the leaf color and photosynthesis pathway, and it provides a valuable basis for understanding the molecular and genetic mechanisms of leaf color in cucumber.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3