RcbHLH59-RcPRs module enhances salinity stress tolerance by balancing Na+/K+ through callose deposition in rose (Rosa chinensis)

Author:

Su Lin1,Zhang Yichang1,Yu Shuang1,Geng Lifang1,Lin Shang1,Ouyang Lin2,Jiang Xinqiang1ORCID

Affiliation:

1. Qingdao Agricultural University College of Landscape Architecture and Forestry, , Qingdao, 266000, China

2. Chinese Academy of Agricultural Sciences Institute of Urban Agriculture, , Chengdu, 610000, China

Abstract

AbstractBasic helix–loop–helix (bHLH) proteins play pivotal roles in plant growth, development, and stress responses. However, the molecular and functional properties of bHLHs have not been fully characterized. In this study, a novel XI subgroup of the bHLH protein gene RcbHLH59 was isolated and identified in rose (Rosa sp.). This gene was induced by salinity stress in both rose leaves and roots, and functioned as a transactivator. Accordingly, silencing RcbHLH59 affected the antioxidant system, Na +/K + balance, and photosynthetic system, thereby reducing salt tolerance, while the transient overexpression of RcbHLH59 improved salinity stress tolerance. Additionally, RcbLHLH59 was found to regulate the expression of sets of pathogenesis-related (PR) genes in RcbHLH59-silenced (TRV-RcbHLH59) and RcbHLH59-overexpressing (RcbHLH59-OE) rose plants. The RcPR4/1 and RcPR5/1 transcript levels showed opposite changes in the TRV-RcbHLH59 and RcbHLH59-OE lines, suggesting that these two genes are regulated by RcbHLH59. Further analysis revealed that RcbHLH59 binds to the promoters of RcPR4/1 and RcPR5/1, and that the silencing of RcPR4/1 or RcPR5/1 led to decreased tolerance to salinity stress. Moreover, callose degradation- and deposition-related genes were impaired in RcPR4/1- or RcPR5/1-silenced plants, which displayed a salt tolerance phenotype by balancing the Na+/K+ ratio through callose deposition. Collectively, our data highlight a new RcbLHLH59-RcPRs module that positively regulates salinity stress tolerance by balancing Na+/K+ and through callose deposition in rose plants.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference75 articles.

1. Abiotic stress responses in plants;Zhang;Nat Rev Genet,2022

2. Regulation of plant responses to salt stress;Zhao;Int J Mol Sci,2021

3. Mechanisms of plant responses and adaptation to soil salinity;Zhao;Innovation,2020

4. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean;Li;Plant Mol Biol,2021

5. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice;Zhang;BMC Plant Biol,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3