Is There a Minimum Number of Landmarks That Optimizes the Geometric Morphometric Analysis of Mosquito (Diptera, Culicidae) Wings?

Author:

Beriotto Agustina C12,Garzón Maximiliano J12,Schweigmann Nicolás12

Affiliation:

1. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente, Güiraldes (C1428), Departamento de Ecología, Genética y Evolución, Grupo de Estudio de Mosquitos, Buenos Aires, Argentina

2. Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina

Abstract

Abstract Culicids are the most significant arthropods affecting human health. Thus, their correct identification is critical. The use of Geometric Morphometrics (GM) has been recently incorporated into mosquito taxonomy and has begun to complement classic diagnostic techniques. Since sampling size depends on the number of Landmarks (LMs) used, this study aimed to establish the minimum number of wing LMs needed to optimize GM analysis of mosquito species and/or genera from urban and peri-urban areas of Argentina. Female left wings were used for the optimization phase, in which 17 LMs were reduced to four by iterative LM exclusion. To verify its efficiency, Principal Component Analysis (PCA), Discriminant Analysis (DA), and Canonical Variate Analysis (CVA) were performed. Additionally, a phenogram was constructed to visualize the results. We observed that five LMs for the PCA, CVA, and phenogram and nine for the DA enabled discrimination and/or clustering of almost all species and genera. Therefore, we tested the LM selection by using nine LMs and adding new species. The resulting PCA showed little overlap between species and almost all species clustered as expected, which was also reflected in the phenogram. Significant differences were found between wing shape among all species, together with a low total error rate in the DA. In conclusion, the number of LMs can be reduced and still be used to effectively differentiate and cluster culicids. This is helpful for better exploitation of available material and optimization of data processing time when classic taxonomy methods are inadequate or the material is scarce.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3