Testing a Mechanistic Model for Predicting Stand and Tree Growth

Author:

Korol R. L.1,Milner K. S.2,Running S. W.3

Affiliation:

1. 1School of Forestry, University of Montana, Missoula, MT 59812 (406) 243-6311;, Fax: (406) 243-4510

2. 2School of Forestry, University of Montana, Missoula, MT 59812 (406) 243-6311;, Fax: (406) 243-4510

3. 3School of Forestry, University of Montana, Missoula, MT 59812 (406) 243-6311;, Fax: (406) 243-4510

Abstract

Abstract Given the uncertainty of future climate regimes, it has become necessary to develop growth and yield models that can respond to potential changes in climate. TREE-BGC, a derivative of the physiological process model FOREST-BGC, was used to simulate the growth of 998 trees in unevenaged stands near Kamloops, B.C. Stand variables were derived from a tree list. The model used a disaggregation logic to allocate stand level estimates of carbon gain and respiration costs to individual trees. Increments in height and diameter were estimated so as to maintain their allometric relation, but scaled to produce an estimate of stem volume equivalent to the carbon allocated to the trees. Mortality was simulated when the maintenance respiration of the tree exceeded the carbon allocated to the tree. Plot level estimates of 20 yr basal area increment and volume increment were highly correlated with actual measurements (r² = 0.94 and 0.96, respectively; n = 24). The cumulative modeled diameter and height distributions were compared to measured distributions. The simulated cumulative diameter and height distributions were not significantly different from the actual cumulative diameter and height distributions for 23 of the 24 plots (α = 0.05). The model was found to have an accuracy of about 0.16 m² ha-1 yr-1 for basal area and 1.51 m³ ha-1 yr-1 for volume (α' = α" = 0.05), averaged over the 20 yr period. Long-term model behavior was influenced by stand density, basal area, and volumes. Stand mortality appeared to emulate the so-called self-thinning rule, and a maximum size-density relationship was found. For. Sci. 42(2):139-153.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3