Comparison of Methods to Estimate Reineke's Maximum Size-Density Relationship Species Boundary Line Slope

Author:

VanderSchaaf Curtis L.,Burkhart Harold E.

Abstract

Abstract Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes with changes in average tree size is necessary to describe these biological relationships accurately. This article examines three methods to estimate the slope (b) of the MSDR species boundary line across a range of planting densities: ordinary least-squares (OLS), first-difference model, and the linear mixed-effects model. For this article, stability refers to the extent to which parameter estimates do not change when the range of planting densities in the fitting data set changes. When using data from a planting density trial consisting of planting densities ranging from 6,727 to 747 seedlings per hectare, mixed-effect models produced the most stable estimates of b while OLS resulted in the least stable estimates. MSDR boundaries have been defined as either (1) those that describe the boundaries of individual stands (MSDR dynamic thinning line) or (2) those that describe MSDRs common across all sites for a particular species in a certain geographical region (MSDR species boundary line). A further refinement of the MSDR species boundary line is proposed by defining two MSDR species boundary lines, labeled here as I and II. Although both MSDR species boundary lines are positioned above all observations, one MSDR species boundary line, II, has a slope that can be considered the population average of all MSDR dynamic thinning lines; the other species boundary line (I) has a slope that results from positioning the boundary above all observations without accounting for self-thinning patterns of individual stands. A mixed-effects analysis was used to estimate the slope of MSDR species boundary line II.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3