Information Criterion for Nonparametric Model-Assisted Survey Estimators

Author:

James Addison1,Xue Lan2,Lesser Virginia2

Affiliation:

1. Department of Statistics, Oregon State University, Corvallis, OR 97331, USA

2. Department of Statistics, Oregon State University

Abstract

Abstract Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature.

Funder

Simons foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Social Sciences (miscellaneous),Statistics and Probability

Reference27 articles.

1. A New Look at the Statistical Model Identification;Akaike;IEEE Transactions on Automatic Control,1974

2. Model-Assisted Estimation for Complex Surveys Using Penalised Splines;Breidt;Biometrika,2005

3. Local Polynomial Regression Estimators in Survey Sampling;Breidt;Annals of Statistics,2000

4. Nonlinear Additive ARX Models;Chen;Journal of the American Statistical Association,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3