Poverty Mapping Under Area-Level Random Regression Coefficient Poisson Models

Author:

Diz-Rosales Naomi1,Lombardía María José2ORCID,Morales Domingo3

Affiliation:

1. Universidade da Coruña Research Fellow with the , CITIC, A Coruña, Spain

2. Universidade da Coruña Professor with the , CITIC, A Coruña, Spain

3. Universidad Miguel Hernández de Elche Professor with the , IUI-CIO, Elche, Spain

Abstract

Abstract Under an area-level random regression coefficient Poisson model, this article derives small area predictors of counts and proportions and introduces bootstrap estimators of the mean squared errors (MSEs). The maximum likelihood estimators of the model parameters and the mode predictors of the random effects are calculated by a Laplace approximation algorithm. Simulation experiments are implemented to investigate the behavior of the fitting algorithm, the predictors, and the MSE estimators with and without bias correction. The new statistical methodology is applied to data from the Spanish Living Conditions Survey. The target is to estimate the proportions of women and men under the poverty line by province.

Funder

Ministry of Science and Innovation

State Research Agency of the Spanish Government

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Social Sciences (miscellaneous),Statistics and Probability

Reference52 articles.

1. Multivariate Fay-Herriot Models for Small Area Estimation;Benavent;Computational Statistics and Data Analysis,2016

2. Small Area Estimation under a Temporal Bivariate Area-Level Linear Mixed Model with Independent Time Effects;Benavent;Statistical Methods and Applications,2021

3. Small Area Prediction of Proportions with Applications to the Canadian Labour Force Survey;Berg;Journal of Survey Statistics and Methodology,2014

4. Empirical Best Prediction under Area-Level Poisson Mixed Models;Boubeta;TEST,2016

5. Poisson Mixed Models for Studying the Poverty in Small Areas;Boubeta;Computational Statistics and Data Analysis,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small area estimation of labour force indicators under unit-level multinomial mixed models;Journal of the Royal Statistical Society Series A: Statistics in Society;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3